単相系統連系インバータの位相制御手法の開発

1．目的

系統連系を行なら場合の重要な要素技術は同期位相制御である。系統連系インバータは連系する電力系統の電圧情報をもとに，周波数と位相情報 を得て，目的とする電力授受に必要な電圧を出力 する。しかしながら，電力系統に瞬低，電圧低下 の発生または歪みや高調波成分を多く含むなどし た場合，同期信号の誤検出により同期外れをおこ し過電流停止となる。そこで，本研究では単相の系統連系動作において，電圧信号を使用しない電源電圧センサレス同期位相制御を行なら新たな手法を考案した。

2．概要

本研究は，フルブリッジインバータを主回路構成としており，系統連系動作などの交流並列を行 う場合，インバータは電流型として動作を行なう。主回路構成を図1に示した。

図1．主回路構成

三相交流の電力成分は直流としてとらえること ができ，座標変換より得られた有効，無効成分を用いての瞬時電力制御は比較的容易に行なうこと が可能である。筆者らはこれまでにも位相追従制御方式とした三相交流におけるセンサレス制御手法を提案しているが，単相交流を扱う場合は座標変換が適応できず，また瞬時電力は有効，無効電力ともに連系する系統の 2 倍の周波数成分をもつ エネルギー変動を伴うため，適応することができ なかった。本研究では，位相追従制御に必要な $\mathrm{V} \gamma$成分の抽出制御を構築し，単相位相追従制御によ るセンサレス制御の検証を行なった。図2に制御 ブロック図を示した。

本方式では検出した交流電流 isを位相追従制御 により得た位相情報 θ により演算を行ない，有効電流 P ，無効電流 Q の成分に分離する。 さらに位

図2．制御ブロック

相情報の 2θ と直流電圧調節器より得た電力量PI3 より基本信号の $\mathrm{P}, ~ \mathrm{Q}$ の基本信号を生成する。こ れらを同成分毎にF．B制御を行ならことで直流成分としての有効電力 $\mathrm{V} \delta$ ，無効電力 $\mathrm{V} \gamma$ を得ること が可能となる。 V γ 成分には位相情報が含まれて おり，この情報を元に速度情報 ω の補正を行なう。必要な位相情報 θ は速度情報 ω の積分により求め るため，位相情報 θ は瞬時的補正から得た情報で あり，結果的に電圧位相に追従した出力を得る。図 3 に高力率力行動作時におけるシミュレーショ ン結果を示した。

図3．シミュレーション解析結果

3．まとめ

シミュレーションなどの検証により，力行動作に おいてその有効性を確認することはできた。しかし回生動作では多くの不安定要素がある。継続して検証を行ない理論の確立を行いたい。

