新規 LED 夢酵母の育種

1. 目的

これまでの研究で、UV-LEDを使用して清酒酵母の育種試験を行い、吟醸酒の主要な香気成分であるカプロン酸エチルを高生産し、発酵力が強い清酒酵母を選抜した. 当該酵母は LED 夢酵母として H27 年度から実用化している.

今後のLED 夢酵母の活用方法として,製成酒の海外への輸出が考えられる.一方,清酒を含む発酵食品に少量含まれているカルバミン酸エチルは,一部の国で規制値が設定されている.よって,LED 夢酵母仕込み清酒の輸出数量を増加させるためには,カルバミン酸エチルの低減化が必要となる.清酒中でカルバミン酸エチルは,尿素とエタノールの反応により生成することから,カルバミン酸エチルの低減化を目的に,清酒醸造中の尿素生成を可能な限り低減化した新規 LED 夢酵母の育種を試みた.

前年度に LED 夢酵母 4206 株を親株とし、香気成分生成能と発酵力が親株と同程度で、尿素生産量が 1/10 以下に減少している 2 株を取得したが、生成酒の酸度が増加したため、今年度は再度 4206 株を親株として育種を行い、優良株の取得を目指した.また、カプロン酸エチル生成能は低いものの、生成酒の酸度が低い特徴を持つ 3696 株を親株とし、同様に育種を行い、優良株の取得を目指した.

2. 方法

酵母育種試験の親株には LED 夢酵母 4206 株と 3696 株を用いた. YPD 液体培地で 28°C, 2 日間培養した酵母培養液を,遠心分離にて集菌後,生理食塩水に懸濁し,約 2×10⁷cfu/mL の菌懸濁液を調整した.菌懸濁液 20mL を直径 90mm のシャーレに取り,50mm の距離から LED を用いて 280nm の紫外線を

20~300 秒間照射した. 照射後の菌液を遠心分離にて集菌し, CAO 寒天培地に塗布し, 28℃で 20 日間培養した. 生育したコロニーについて, アルギニンを唯一の炭素源とするアルギニン(Arg) 寒天培地およびオルニチンを唯一の炭素源とするオルニチン(Orn) 寒天培地に移植し, Arg 寒天培地では生育せず, Orn 寒天培地で生育する株をアルギナーゼ欠損株として単離した.

得られた酵母について,アルコール脱水麹添加麹エキス培地による発酵試験および総米 200gの清酒小仕込み試験を行い,培地上清,もろみおよび製成酒の日本酒度,酸度,アミノ酸度,アルコール分および香気成分を常法に従い測定し,尿素を酵素法 (Fキット 尿素/アンモニア)により測定した.

3. 結果

主波長280nmのUV-LEDを光源とする紫外線照射 により、Arg寒天培地で生育せず、Orn寒天培地で生 育する変異株が126株得られた. 得られた変異株 について,アルコール脱水麹添加麹エキス培地を用 いて発酵試験を行い, 炭酸ガス減少量と香気成分 生成能が親株と同程度の株を14株選抜した. 選抜 した14株について総米200g規模の清酒小仕込み試 験を行った結果、親株と比較して、尿素量が1/10 以下に減少した株を7株取得した.この7株と親株 の清酒小仕込み試験の結果を表1に示した.この うち12422株は親株の3696株と比較して, もろみ日数 はやや延びたものの, 酸度や香気成分は遜色ないこ とから,優良株として選抜した.12756株は親株の4206 株と比較して、もろみ日数は短くなり、酸度は低く、 カプロン酸エチル生成能は同程度であることから, 優良株として選抜した.

21 2008/9/1/11/11/11/11/11/11/11/11/11											
取得株	親株	もろみ日数	酸度	アミノ酸度	日本酒度	アルコール 度	酢酸エチル	酢酸イソ アミル	イソアミル アルコール	カプロン酸 エチル	尿素
		(目)	(ml)	(ml)		(%)	(ppm)	(ppm)	(ppm)	(ppm)	(mg/L)
-	(4206)	31	2.3	1.8	10.5	18.3	92	3.2	155	5.3	15.1
-	(3696)	29	2.2	1.6	10.3	18.3	97	3.6	163	1.4	12.6
12058	3696	31	2.3	1.6	8.2	18.0	66	3.1	175	1.6	0.4
12222	3696	38	2.1	2.7	-1.9	17.3	111	3.8	164	1.6	0.1
12405	3696	33	2.3	2.0	7.6	18.1	85	3.7	160	1.5	0.1
12422	3696	31	2.1	1.7	10.3	18.3	108	3.7	160	1.5	0.1
12907	3696	30	2.5	1.2	9.3	18.3	105	3.7	165	1.6	0.2
12552	4206	33	2.2	2.0	8.2	18.2	89	3.8	168	5.7	0.1
12756	4206	29	2.1	1.7	9.7	17.7	69	2.3	163	5.7	0.2

表 1 200g 規模清酒小仕込み試験結果

食品・応用生物担当 岡久 修己