報 文

県産材を活用した建築床構面の開発

Development of Architectural Floor Structure Utilizing Prefectural Materials

坂田 和則*, 中岡 正典*
Kazunori Sakata and Masanori Nakaoka

抄 録

県産材を利用した住宅で天井および火打ちのないスギ厚板現し2階床の需要がある。床上面をスギ合板12mm、床下面をスギ厚板30mmとした床構面を試作し、面内せん断試験を行った。釘にはN90またはビス90mmを使用した各3体とし、それぞればらつき係数を求め、短期基準せん断力を床倍率を求めた。低減係数αを0.8と仮定した場合の床倍率は釘仕様が4.4、ビス仕様が4.8であり、構造用合板24mm四方打ち（CN75@150）の許容相当床倍率4.0以上の性能が得られた。

1 はじめに

県産材を多く使用した住宅では、天井および火打ちのないスギ厚板現し2階床の需要があるが、住宅性能表示制度などでは床においても壁と同様に耐震性能が必要な場合がある。そこで、県産材の利用拡大の観点から、徳島県内で生産されているスギ合板、MDF、スギ三層ボード、スギ厚板を用いた床構面（6種各1体）を試作し、予備的に床倍率を求めた。その後、面材スギ厚板を現しとして、スギ合板等の面材を釘留めして床構面（2種各3体）を試作し、今後の設計の基礎資料とすることを目的に強度性能評価を行った。

2 試験方法

2・1 試験体

試験体（スギ合板12mm+スギ厚板30mm）を図1に示した。

スギ枠材（外枠幅120mm、梁せい150mm）に対し、スギ厚板（厚さ30mm×幅180mm）10枚を床梁との交点で1本仮釘打留めし、さらにその上から、スギ合板12mmまたは強化MDF9mmを厚板の幅方向には1枚につき2本、長さ方向には100mmピッチで釘打ちした（図1）。両者の釘の位置は同じである。また、スギ三層ボード36mmのみを100mmピッチで釘打ちしたものについても試作した。釘はそれぞれの仕様についてN75およびN90の釘を使用した。

試験体数は各1体の6種類とした。

また、スギ合板を用いた仕様について、さらに接合具を釘N90とビス90mm（パネリードP6×90Ⅱ）としたものについて2種類、繰り返し数3として試験体を作成した。釘、ビスの位置は図1と同じである。

図1 試験体例

* 生活科学担当
試験前の試験体について、スギ合板側を図2に、スギ厚板側を図3に示した。

図2 試験体（スギ合板側 上面）
図3 試験体（スギ厚板側 下面 現し）

2.2 加力方法
試験は、徳島県立農林水産総合技術支援センターの面内せん断試験機ATC-100ロードセル容量100kN（鷺宮製作所）を用いた。試験体の固定方法は、ホールダウン金物を用い試験装置の土台への柱脚固定式とした。制御は変形角制御で見かけのせん断変形角1/450,1/300,1/200,1/150,1/100,1/75,1/50,1/30radを正負3回繰り返した後、1/15radを正1回加力した。包絡線の完全塑性モデルを計算し、降伏耐力、0.2Pu/Ds（ねばり），最大荷重の2/3, 1/120rad時ねばりの最小値から床倍率を算出した。試験体数1のもののはばらつき係数を1として、試験体数3のものは、ばらつき係数を計算して算出した。また、いずれも低減係数は1とした。

加力時の状況を図4に示した。なお、試験方法およびデータ解析は参考文献1に準じた。

図4 加力例（1/15rad）

3 実験結果および考察
試験体数1の試験結果を表1に示した。6種類の試験体は床倍率が4.8〜6.2であった。種類別ではスギ合板12mm、MDF9mm、三層ボードのみの順で高くなった。釘の種類では、スギ合板とスギ三層ボードではN90の方が高かったが、MDF9mmでは逆となった。これは、構造用9mmMDFのN90を使用する際、3mmの先穴を開けたためと思われる。なお、床倍率はすべて粘りに関係する0.2Pu/Dsで決定した。いずれも構造用合板24mm四方打ち（CN75@150）の許容相当床倍率4.0以上となり、剛性床としての可能性が示された。
試験前の試験体について、スギ合板側を図2に、スギ厚板側を図3に示した。

図2 試験体（スギ合板側 上面）
図3 試験体（スギ厚板側 下面 現し）

2・2 加力方法
試験は、徳島県立農林水産総合技術支援センターの面内せん断試験機ATC-100（鷺宮製作所）を用いた。試験体の固定方法は、ホルダダウン金物を用い試験装置の土台への柱脚固定式とした。制御は変形角制御で見かけのせん断変形角1/450, 1/300, 1/200, 1/150, 1/100, 1/75, 1/50, 1/30 radを正負3回繰り返しの後、1/15 radを正1回加力した。包絡線の完全断塑性モデルを計算し、降伏耐力、0.2Pu/Ds（ねばり）、最大荷重の2/3、1/120 rad時の荷重の最小値から床倍率を算出した。試験体数1のもはばらつき係数を1として、試験体数3のもはばらつき係数を計算して算出した。また、いずれも低減係数は1とした。加力時の状況を図4に示した。なお、試験方法およびデータ解析は参考文献1に準じた。

図4 加力例（1/15 rad）

3 実験結果および考察
試験体数1の試験結果を表1に示した。

次に、3体試作したN90仕様、ビス90mm仕様の荷重-変形角曲線と包絡線解析の例を図5、図6に示し、結果をそれぞれ、表2、表3に示した。床倍率算定に用いる降伏耐力、0.2Pu/Ds（ねばり）、最大荷重の2/3、1/120 rad時の荷重はN90よりビス90mmが高かった。床倍率の決定因子はいずれも0.2Pu/Dsであった。なお、ビスを用いた試験体のうち1体が1/15 radのサイクルで梁が破損したため（図7）、破損時からの荷重が1/15 radまで継続したとして包絡線を補正した。床倍率は、N90で5.6、ビス90mmで6.0であり、低減係数を考慮にいれたとしても構造用合板24mm四方打ち（CN75@150）の許容相当床倍率4.0以上の性能が得られた。剛性や床倍率は満足する結果が得られた。ただし、床倍率が高くなると耐力の高い接合金物が施工時に必要となる。試験機においてもホールダウンの耐力を超えないように適切なものが必要となった。設計耐力を超えたと思われる試験体を試験機に固定しているホールダウン金物の変形状況を図8に示す。

表1 試験体数1の試験結果

<table>
<thead>
<tr>
<th>面材</th>
<th>スギ厚板</th>
<th>釘</th>
<th>最大荷重Pmax [kN]</th>
<th>降伏耐力Py [kN]</th>
<th>0.2Pu/Ds [kN]</th>
<th>2/3・Pmax [kN]</th>
<th>P(1/120) [kN]</th>
<th>短期基準せん断耐力Po [kN]</th>
<th>床倍率</th>
</tr>
</thead>
<tbody>
<tr>
<td>スギ12mm合板</td>
<td>30mm</td>
<td>N75</td>
<td>44.50</td>
<td>23.18</td>
<td>17.30</td>
<td>29.67</td>
<td>18.90</td>
<td>17.30</td>
<td>4.8</td>
</tr>
<tr>
<td>スギ12mm合板</td>
<td>30mm</td>
<td>N90</td>
<td>49.32</td>
<td>24.71</td>
<td>18.03</td>
<td>32.88</td>
<td>19.23</td>
<td>18.03</td>
<td>5.1</td>
</tr>
<tr>
<td>構造用9mmMDF</td>
<td>30mm</td>
<td>N75</td>
<td>49.17</td>
<td>25.52</td>
<td>20.27</td>
<td>32.78</td>
<td>21.79</td>
<td>20.27</td>
<td>16.0</td>
</tr>
<tr>
<td>構造用9mmMDF</td>
<td>30mm</td>
<td>N90</td>
<td>54.92</td>
<td>29.66</td>
<td>19.90</td>
<td>36.61</td>
<td>21.54</td>
<td>19.90</td>
<td>5.6</td>
</tr>
<tr>
<td>36mmスギ三層ボード</td>
<td>なし</td>
<td>N90</td>
<td>39.43</td>
<td>27.13</td>
<td>22.22</td>
<td>32.96</td>
<td>24.82</td>
<td>22.22</td>
<td>6.2</td>
</tr>
<tr>
<td>36mmスギ三層ボード</td>
<td>なし</td>
<td>N75</td>
<td>49.43</td>
<td>27.13</td>
<td>22.22</td>
<td>32.96</td>
<td>24.82</td>
<td>22.22</td>
<td>6.2</td>
</tr>
</tbody>
</table>

ばらつき係数、低減係数は1とした。
表2 スギ合板+スギ厚板+N90 釘仕様の床倍率算定計算

<table>
<thead>
<tr>
<th></th>
<th>最大荷重</th>
<th>降伏耐力</th>
<th>降伏変形角</th>
<th>初期剛性</th>
<th>終局耐力</th>
<th>終局変形角</th>
<th>塩張耐力</th>
<th>塩張変形角</th>
<th>構造特定係数</th>
<th>試験体数</th>
<th>降伏耐力0.2Pu/Ds</th>
<th>降伏変形角0.2γv</th>
<th>構造特定係数</th>
<th>試験体数</th>
</tr>
</thead>
<tbody>
<tr>
<td>N90-1</td>
<td>49.05</td>
<td>25.81</td>
<td>0.00926</td>
<td>2125</td>
<td>41.35</td>
<td>0.01946</td>
<td>3.426</td>
<td>0.4134</td>
<td>21.48</td>
<td>0.07</td>
<td>20.01</td>
<td>32.70</td>
<td>20.01</td>
<td>32.70</td>
</tr>
<tr>
<td>N90-2</td>
<td>49.29</td>
<td>26.04</td>
<td>0.00837</td>
<td>2203</td>
<td>41.65</td>
<td>0.01890</td>
<td>3.527</td>
<td>0.4064</td>
<td>22.94</td>
<td>0.07</td>
<td>20.49</td>
<td>32.86</td>
<td>20.49</td>
<td>32.86</td>
</tr>
<tr>
<td>N90-3</td>
<td>50.23</td>
<td>26.82</td>
<td>0.00892</td>
<td>2212</td>
<td>42.89</td>
<td>0.01939</td>
<td>3.438</td>
<td>0.4135</td>
<td>22.53</td>
<td>0.07</td>
<td>20.79</td>
<td>33.49</td>
<td>20.79</td>
<td>33.49</td>
</tr>
</tbody>
</table>

平均 | 49.52 | 26.22 | 0.00885 | 2180 | 41.96 | 0.01925 | 3.464 | 0.4108 | 22.53 | 0.07 | 20.43 | 33.02 | 20.43 | 33.02 |

標準偏差 | 0.63 | 0.53 | 0.00045 | 48 | 0.53 | 0.01946 | 0.055 | 0.01946 | 2.02 | 0.02 | 0.53 | 0.418 | 0.53 | 0.418 |

変動係数 | 0.013 | 0.020 | 0.051 | 0.022 | 0.019 | 0.000 | 0.016 | 0.000 | 0.016 | 0.004 |

ばらつき係数 | 0.991 | 0.991 | 0.994 | 0.981 |

平均×ばらつき係数[kN] | 25.97 | 20.24 | 32.82 | 22.10 |

短期基準せん断耐力Po[kN]
床加力方向長さ(mm) | 1820 |

床倍率(α=1) | 5.6 |

図7 梁破損の例

4 まとめ

県産材を利用した住宅では天井および火打ちのないスギ厚板を基礎面に搭載した床を試作し、面内せん断試験を行い床倍率を求めた。強化MDFとスギ厚板の積層や三層ボードなど、6種類の試験体を比較した結果では、スギ合板12mmと厚板30mmを使用したものは、床倍率が他の仕様よりも低い傾向であった。最終的にスギ合板12mmとスギ厚板30mmをスギ梁材にN90とビス90mmで打ち付けた2種類について繰り返し数3で試験を行い短期基準せん断力を求

図8 ホールダウン金物の変形例
めた。

床倍率は N90 釘を使用したものが 5.6, ビス 90mm を使用したものが 6.0 であった。低減係数 \(a\) を 0.8 と仮定した場合の床倍率は釘仕様が 4.4, ビス仕様が 4.8 であり, 構造用合板 24mm 四方打ち (CN75@150) の許容相当床倍率 4.0 以上の性能が得られた。

表2 スギ合板+スギ厚板+N90 釘仕様の床倍率算定計算

<table>
<thead>
<tr>
<th>試験体</th>
<th>最大荷重 (P_{max})</th>
<th>降伏耐力 (P_y)</th>
<th>降伏変形角 (\gamma_y)</th>
<th>初期剛性 (K)</th>
<th>致命耐力 (P_u)</th>
<th>致命変形角 (\gamma_u)</th>
<th>降伏点変形角 (\gamma_v)</th>
<th>塑性率 (\mu)</th>
<th>构造特定係数 (D_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N90-1</td>
<td>49.05</td>
<td>25.81</td>
<td>0.00926</td>
<td>2125</td>
<td>41.35</td>
<td>0.06667</td>
<td>0.01946</td>
<td>3.426</td>
<td>0.4134</td>
</tr>
<tr>
<td>N90-2</td>
<td>49.29</td>
<td>26.04</td>
<td>0.00837</td>
<td>2203</td>
<td>41.65</td>
<td>0.06667</td>
<td>0.01890</td>
<td>3.527</td>
<td>0.4064</td>
</tr>
<tr>
<td>N90-3</td>
<td>50.23</td>
<td>26.82</td>
<td>0.00892</td>
<td>2212</td>
<td>42.89</td>
<td>0.06667</td>
<td>0.01939</td>
<td>3.438</td>
<td>0.4125</td>
</tr>
<tr>
<td>平均</td>
<td>49.52</td>
<td>26.22</td>
<td>0.00885</td>
<td>2180</td>
<td>41.96</td>
<td>0.06667</td>
<td>0.01925</td>
<td>3.464</td>
<td>0.4108</td>
</tr>
<tr>
<td>標準偏差</td>
<td>0.63</td>
<td>0.53</td>
<td>0.00045</td>
<td>48</td>
<td>0.82</td>
<td>0.00000</td>
<td>0.00030</td>
<td>0.055</td>
<td>0.0038</td>
</tr>
<tr>
<td>変動係数</td>
<td>0.013</td>
<td>0.020</td>
<td>0.051</td>
<td>0.022</td>
<td>0.019</td>
<td>0.000</td>
<td>0.016</td>
<td>0.016</td>
<td>0.009</td>
</tr>
<tr>
<td>ばらつき係数</td>
<td>0.991</td>
<td>0.991</td>
<td>0.994</td>
<td>0.981</td>
<td>0.991</td>
<td>0.991</td>
<td>0.994</td>
<td>0.981</td>
<td>0.991</td>
</tr>
<tr>
<td>平均×ばらつき係数</td>
<td>25.97</td>
<td>20.24</td>
<td>32.82</td>
<td>22.10</td>
<td>25.97</td>
<td>20.24</td>
<td>32.82</td>
<td>22.10</td>
<td></td>
</tr>
</tbody>
</table>

表3 スギ合板+スギ厚板+ビス 90mm 仕様の床倍率算定計算

<table>
<thead>
<tr>
<th>試験体</th>
<th>最大荷重 (P_{max})</th>
<th>降伏耐力 (P_y)</th>
<th>降伏変形角 (\gamma_y)</th>
<th>初期剛性 (K)</th>
<th>致命耐力 (P_u)</th>
<th>致命変形角 (\gamma_u)</th>
<th>降伏点変形角 (\gamma_v)</th>
<th>塑性率 (\mu)</th>
<th>构造特定係数 (D_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B90-1</td>
<td>58.21</td>
<td>28.32</td>
<td>0.01194</td>
<td>2075</td>
<td>45.79</td>
<td>0.06667</td>
<td>0.02206</td>
<td>3.022</td>
<td>0.4453</td>
</tr>
<tr>
<td>B90-2</td>
<td>58.89</td>
<td>30.36</td>
<td>0.01099</td>
<td>2245</td>
<td>50.42</td>
<td>0.06667</td>
<td>0.02246</td>
<td>2.969</td>
<td>0.4500</td>
</tr>
<tr>
<td>B90-3</td>
<td>56.96</td>
<td>29.78</td>
<td>0.00877</td>
<td>2708</td>
<td>51.81</td>
<td>0.06667</td>
<td>0.01913</td>
<td>3.484</td>
<td>0.4093</td>
</tr>
<tr>
<td>平均</td>
<td>58.02</td>
<td>29.49</td>
<td>0.01057</td>
<td>2343</td>
<td>49.34</td>
<td>0.06667</td>
<td>0.02122</td>
<td>3.158</td>
<td>0.4349</td>
</tr>
<tr>
<td>標準偏差</td>
<td>0.98</td>
<td>1.05</td>
<td>0.00163</td>
<td>327</td>
<td>3.15</td>
<td>0.00000</td>
<td>0.00182</td>
<td>0.284</td>
<td>0.0223</td>
</tr>
<tr>
<td>変動係数</td>
<td>0.017</td>
<td>0.036</td>
<td>0.154</td>
<td>0.140</td>
<td>0.064</td>
<td>0.000</td>
<td>0.086</td>
<td>0.090</td>
<td>0.051</td>
</tr>
<tr>
<td>ばらつき係数</td>
<td>0.983</td>
<td>0.950</td>
<td>0.992</td>
<td>0.952</td>
<td>0.983</td>
<td>0.950</td>
<td>0.992</td>
<td>0.952</td>
<td>0.983</td>
</tr>
</tbody>
</table>

謝辞

本研究を実施するに当たり、試験体の仕様の検討の際、お世話になった那賀川すぎ共販（協），UN 建築研究所（株），試験装置を利用していただいた徳島県立農林水産総合技術支援センターにお礼申し上げます。

参考文献